Hybrid Graph Neural Networks for Crowd Counting
نویسندگان
چکیده
منابع مشابه
Crowd Counting by Adapting Convolutional Neural Networks with Side Information
Computer vision tasks often have side information available that is helpful to solve the task. For example, for crowd counting, the camera perspective (e.g., camera angle and height) gives a clue about the appearance and scale of people in the scene. While side information has been shown to be useful for counting systems using traditional handcrafted features, it has not been fully utilized in ...
متن کاملCrossing-Line Crowd Counting with Two-Phase Deep Neural Networks
In this paper, we propose a deep Convolutional Neural Network (CNN) for counting the number of people across a line-of-interest (LOI) in surveillance videos. It is a challenging problem and has many potential applications. Observing the limitations of temporal slices used by state-of-the-art LOI crowd counting methods, our proposed CNN directly estimates the crowd counts with pairs of video fra...
متن کاملSupplementary Material : Switching Convolutional Neural Network for Crowd Counting
Differential training on the CNN regressors R1 through R3 generates a multichotomy that minimizes the predicted count by choosing the best regressor for a given crowd scene patch. However, the trained switch is not ideal and the manifold separating the space of patches is complex to learn (see Section 5.2 of the main paper). To mitigate the effect of switch inaccuracy and inherent complexity of...
متن کاملFully Convolutional Neural Networks for Crowd Segmentation
In this paper, we propose a fast fully convolutional neural network (FCNN) for crowd segmentation. By replacing the fully connected layers in CNN with 1 × 1 convolution kernels, FCNN takes whole images as inputs and directly outputs segmentation maps by one pass of forward propagation. It has the property of translation invariance like patch-by-patch scanning but with much lower computation cos...
متن کاملCrowd counting via scale-adaptive convolutional neural network
The task of crowd counting is to automatically estimate the pedestrian number in crowd images. To cope with the scale and perspective changes that commonly exist in crowd images, state-of-the-art approaches employ multi-column CNN architectures to regress density maps of crowd images. Multiple columns have different receptive fields corresponding to pedestrians (heads) of different scales. We i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2020
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v34i07.6839